

#### LA-UR-21-31385

Approved for public release; distribution is unlimited.

Title: Tracking Charge and Energy Flow at the Nanoscale by Ultrafast

Microscopy

Author(s): Yuan, Long

Intended for: Presentation for Faculty Position

Issued: 2021-11-16



# Tracking Charge and Energy Flow at the Nanoscale by Ultrafast Microscopy

# Long Yuan

Los Alamos National Lab

2021.11.19

## Research Background



- Two-dimensional (2D) heterostructures can be formed by artificially stacking layers of different 2D materials
- > 2D heterostructure optoelectronic devices with low-power consumption

  A K Geim et al. Nature 499 4

A. K. Geim et al., *Nature* 499, 419 (2013) Unuchek et al., *Nature* 560, 340 (2018) Massicotte et al., *Nat. Nano* 11, 42 (2016)

## **Excitonic Transistors**





## **Ultrafast Photodetectors**







## **Research Interests**



## **Method**

## **Ultrafast Transient Absorption Microscope**



➤ High temporal (~200 fs) and spatial precision (~50 nm) allows to directly track charge and energy flow at the nanoscale

Note: PhD work at Purdue

## **Ultrafast Charge Transfer in WSe<sub>2</sub>-Graphene**





Note: PhD work at Purdue

L. Yuan et al., *Sci. Adv.* 4, e1700324 (2018)

## **Charge Transfer Dynamics**



#### **Enhanced Photo-Carrier Generation**



## **Interlayer Exciton Transport in WS<sub>2</sub>-WSe<sub>2</sub>**







#### Twist-Angle-Dependent Moire Potential



## Twist-Angle-Dependent Interlayer Exciton Diffusion



Note: PhD work at Purdue

L. Yuan et al. *Nat. Mater.* 2020, 19, 617

'

Pump-probe delay (ns)

О

## Manipulation of Exciton Dynamics in WSe<sub>2</sub>/Metasurface

WSe<sub>2</sub>-Metasurface



**Electric-Field Enhancement** 



Note: Postdoc work at CINT

L. Yuan et al. *Nano. Lett.* 2021, In Press

## **Manipulation of Exciton Dynamics**







## **Future Study**

➤ Investigate charge carriers dynamics and transport in emerging low-dimensional materials

> Develop novel nanophotonics platforms to enhance light-matter interactions in two-dimensional materials